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Phase diagram for unzipping DNA with long-range interactions
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We present a critique and extension of the mean-field approach to the mechanical pulling transition in bound
polymer systems. Our model is motivated by the theoretically and experimentally important examples of
adsorbed polymers and double-stranded DNA. We focus on the case in which quenched disorder in the
sequence of monomers is unimportant for the statistical mechanics, but we include excluded volume interac-
tions between monomers. Our phase diagram for the critical pulling force shows an interesting reentrant phase
at low temperatures which should be observable in both disordered and homogenous polymer systems. We also
consider the case of nonequilibrium pulling, in which the external force probes the molecule’s local, rather than
global structure. The dynamics of the pulling transition in such experiments could illuminate the polymer’s
loop structure, which depends on the nature of excluded volume interactions.
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Recent experiments using micromanipulation techniqueshould admit bound states corresponding to adsorbed or
to pull and stretch single molecules have led the way to aipped conformations. In this framework, every monomer far
better understanding of statistical properties of polymer sysfrom the ends of the molecule experiences the same field,
tems that cannot be probed in the b{dR. Theoretical work and thus contributes the same amount to the overall bound-
on these systems has focused on the complex phenomesgte free energy. The mean-field free energy thus reduces to
arising from heterogeneity in the sequence of monorf@&ts ~ 7,-=N\, where A is determined by the self-consistent
In this paper we study the simpler case of a homopolymefield, ¢.; [5,6]. Recent theoretical work has explored the
under the influence of an external force. We predict a reeneffect of an external pulling force, represented by a vector
trant, or “cold unzipping” transition which has also been potential term in the energy, on the mean-field thermody-
predicted on the basis of lattice modgdg, and which should  namics[2]. A polymer that is adsorbed to an attractive sur-
be observable in both heteropolymer and homopolymer systace or “zipped” together with a complementary chain as in
tems. We also find that some of the same phenomena causgdDNA, can be pulled out of the bound state by a force
by disorder in a heteropolymer can arise in a homopolymeexerted, for example, by a glass bead attached at one end of
system near its thermal denaturation temperature due to inhe molecule. The unbound section of the polymer, contain-

homogeneities in the polymer’s structure. ing N’ links, has a force-dependent free energy,
The Hamiltonian for a polymer in an external field takes =N’g(F), which decreases monotonically with The func-
the general forni4] tional form of g(F) can be obtained from a Gaussian or a
freely jointed chain model for the stretched polymer. At a
N| Td /dr)\?2 critical force defined by(F.)=N\, the bound state becomes
Ho= fo 2_b2<ﬁ) +¢(r(n))|dn+E[r(n)], (1) unstable with respect to the stretched part of the molecule,

and a sharp unbinding transition occ(i2g.

The mean-field model relies on the strong assumption that
with d the spatial dimension andb the Kuhn length. every bound monomer experiences the same effective field,
Throughout this paper, we skg=1. ¢(r) is an attractive so that the interaction between the stretched and bound parts
potential arising, for example, from the interaction with anof the molecule is independent of the number of monomers
adsorbing surface, or from the attraction between two strandsiready unbound. This feature of the mean-field model
in double-stranded DNAdsDNA). We assume that) is  breaks down, for example, in the presence of variations in
short ranged, and depends only on the local coordinét¢,  the binding energies for different base pairs in dsDNA, or
describing the distance from the adsorbing surface or thgequence disorder in an adsorbed polymer. The effect of such
separation between the two dsDNA strands. In the case of sequence heterogeneity on the pulling transition was the sub-
homopolymer,¢ does not depend on the position along theject of careful study, and several interesting phenomena were
sequence. Finally, the volume interactions between differentredicted to emerge in these systef23. Yet the simple
segments of the chain are represented by the Eman)]. mean-field model of the pulling transition can break down

In the mean-field approximation, interactions between dif-even for totally homogeneous polymers when long length-
ferent sections of the polymer chain, together with whatevescale correlations in the structure appear near the temperature
external fields are present, contribute to an overall effectivef thermal unbinding,T.. Intuitively, thermal fluctuations
potential ¢« for each monomer. This field is derived using nearT, create large loops of unbound monomers. The pull-
conditions of self-consistency, and for low temperatures iiing force interacts with the bound polymenly in the local

region near the end of the stretched-out part of the molecule,
so the local structure is important in determining the behav-
*Electronic address: eugene@belok.harvard.edu ior of the pulled polymer. Spatial inhomogeneities caused by
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large loops neall; affect both the equilibrium and the non- experimental determination of the relative chain stiffness, re-
equilibrium behavior of a bound polymer in response to aated to b, for different molecules, through careful low-
pulling force. We consider these effects in turn. temperature investigation &f; .

The pulling force applied to one end of the polymer adds Close to the thermal unbinding temperatufg, as\ ap-
a vector potential term to the overall Hamiltonig], giving  proaches zero, the mean-field approximation breaks down
H="Ho+ Hpu, Where because of long-range correlatiofsorresponding to long
loops in the structure of the bound chain. Indeed, within the
mean-field framework the mean size of loops grows figar
as[6], (k)~\"1~|T—T, 2. Forming a loop carries an en-
tropic cost, which depends nonlinearly on the loop size, not
We have assumed that the pulling forées Fz, is perpen-  Simply on the local density of monomers. Dealing directly
dicular to the binding surface. Neglecting the effect of theWith the interaction energ[r(n)] complicates the analytic
finite size of the molecule, we can drop the last term. AfterProblem, although attempts have been made to simulate this
tracing over all configurationgy (n)}, in the partition func- full model numerically[ 7]. We will follow a different route
tion, we are left with the following contribution to the free first proposed by Poland and Scherdgs#), in which the
energy from the pulled-away part of the molecy]: mean-field model is extended by introducing a general form
g(F)=—F2b2/2dT. Alternatively, the freely jointed chain for the entropy of a loop of lengtk,
model, which is more realistic at high pulling forces and low

N

HpuII: —-F- r(O): Ff

&
gnjdn—Fz(N). (2

temperatures, giveg(F)= — T In[T sinh(Fb/T)/Fb]. S(k)=A+kIn(s) —cIn(k), ®)
In the mean-field framework, the pulling transition occurs _ ) ) )
atg(FJ) =\, or wheres_|s a nonuniversal constant _anas determme_d by thg
properties of the loops. In particular, for noninteracting
F.=+\—2d\T/b? (Gaussiap monomers E[r(n)]=0) the loops are random walks oh

dimensions, withc=d/2, whereas excluded volume interac-
F.=(T/b)sinh(Fb/T)e T (freely jointed. (3)  tions between monomers tend to increase the value[ef.
The binding energy due to the potential, leads to a
The mean-field approximation should hold good at low tem-statistical weighto=e~%0'T for each bound monomer. In
peratures, since most monomers will be in the bound statéact, the only relevant parameter in this model is the energy
and only short loops will form. A3 —0, the free energy per difference between the bounded and unbounded monomers,
monomer,\, converges to some constant valae),, cor-  In(w)—In(s), so that we can simply put=1.
responding to the binding energy of one monomer. The We work with the grand partition function:Z(z)
Gaussian model thus predidis~ (A oT)% however, in this ==},_;Z(m)z", whereZ(m) is the canonical partition func-
regime the Gaussian model for the free energy of a stretchetibn for a chain ofm links, andz is a fugacity. The chain can
chain is not valid, since there is little elasticity in the poly- be described as a string of loop-train pairs, giving
meric bonds. We instead rely on the freely jointed model,
which gives at low temperatures, g(F)=—Fb Vo(z2)U(2)
—TIn(T/2Fb), so thatF(T=0)=\,/b. The limiting be- 2D=1 N0 ©)
havior for T<Ayb is given by
T where U(z)=2'f<°.:l(sk/k°)zk and V(2)=3;_,0%Z*. The
Fo~Xo/b——In=—-o. (4) bouno_lary (_:ondmons ary/o= 1+V(z) and U =1+ U(2).
b 2\ob We will be interested in the thermodynamic limit, where the

total number of links(N)=d In Z/d In z, diverges. From Eq.
We thus expect to observavo desorbed phases, one at (6) we see that this limit corresponds to the valrez*,

high temperature and another at sufficiently low temperatur&yherey () = 1NV(z*) = l/wz* — 1. The thermal desorption
for F>\o/b. At high temperatures, the entropic advantage,, genaturation transition af, corresponds t@=z.=1/s

of the unbound monomers over-rides the energetic stabilityg g

of the bound phase. At low temperatures the free energy per \ne can introduce an external pulling force through an

monomer of the str_etched part of the polymer or DNA ir!- extra boundary conditionZg=Vg(z) 2, where Ve(z)=1
creases as the chain becomes stiffer. The effect of lowering Ef_lwlézk andwp=e 9F'T is the statistical weight per

temperature neaf =0 is to stiffen the chain, making it nqnomer of the stretched part of the polymer. The number of
easier to pull out'the polymer or unzip the dsDNA. Theunbound monomers goes likam)=(dIn Z /d In wg)~(1
temperature at which this reentrant phase should exist is de—'sz*)‘l so that we naturally identify the poinis

! c

termined by the specific properties of the chain, in particular N . , .
the Kuhn lengthb. In fact, at low temperatures, we expect =1/z _as_the mechanical pulling transition. Forclose to
F.(T,b)=(1b)F(T,b=1). This reentrant phase was ig- 'c: IS gives

nored by continuum studies which focused on the Gaussian

model[2], although a similar low-temperature bound phase Fe~(T/b)y—2dInz*  (Gaussiap,
was recently predicted on the basis of a lattice-based calcu- (7)
lation for DNA unzipping[3]. The reentrance may allow for F.~(T/b)y1—z* (freely jointed.
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Fc precise measurement of the behavior of the critical force near
0.7 e — T.. In particular, experiments on the pulling of DNA and of
',//’ . adsorbed homopolymers should exhibit different scaling of

F. nearT., corresponding to their different values af

So far, we have considered the ensemble where the exter-
nal parameterd; andT, are fixed, so that the pulled polymer
remains in equilibrium during the experiment. In fact, as
long as these parameters are varied sufficiently slowly, the
system will adjust to changes adiabatically. Thus, for ex-
ample, the parameten will be characterized by the force-
dependent distribution described above, while the bound part
of the polymer will display a corresponding, temperature-
0.2 0.4 0.6 0.8 1 dependent distribution of loop sizes. The behavior of this
distribution will depend ort close toT,.

Fast variations in the pulling force, on the other hand,
units, and we have saty=0.4 andT.=1. The curves correspond may I??d to n_onequllllbrlum beha}wolr, Ir\‘NWh'Ch the _dIStI’IbUr;
to c=1.25 (solid), c=3/2 (dashey, andc=2 (dot dashed The tion o 00p sizes plays a C“ru0|a role. \ f can estimate the
area below each curve is the bound phase, while the regime abo&glevam timescale for this nonad'aba_t'c pulling frlom the,
the curve corresponds to unbound conformations. Rouse mod.el fo_r the dynam|cs.of an ideal Gaussian chain.

The relaxation time for correlations between the ends of a
chain of lengthN is ty=N2?b%&/(37°T), where¢ is the co-
At the thermal unbinding transitioz* —z,=1/s=1, so that  €fficient of friction for monomers in the solvefd]. In gen-
F.—0. eral, the relaxation time for a section of the chain of lerigth

The approach td . is described by the fraction of bound scales a$,~k>. If the external force unbinds monomers at a
segment$9], 6=dInz*/dIn . We use the fact that, neag ~ rate of 1fg, we see that fot>ty the polymer will remain
and withc>1, we havgU(z,) — U(z*)|~|z* —z.|¢, where I equilibrium during the pullout.

FIG. 1. Phase diagram showing typical variation of the critical
pulling forceF. atT~0 andT~T,. The force is given in arbitrary

{=min(lc—1). Thus we obtainz* —z.|~|T—T%, so .On .the other hand, ifz is much smaller than .the relax-
that ation time of the smallest loops, the polymer will not have
time to rearrange itself as is ramped up, and whole loops
Fe~|T—T V% (8)  will be pulled out at once. In this case, the force-extension

curve will display jumps corresponding to the pullout of in-

for both the Gaussian and the freely jointed models. We il-dividual loops. This behavior is similar to that derived in
lustrate this result, together with the low-temperature behavmodels for polymers with sequence disorfi&}; but the ran-
ior from Eq. (4), in Fig. 1. domness in this case arises from the distribution of loop

Note that aic=3/2, corresponding to the entropy of non- sizes. The loops serve as a source of quenched disorder in
interacting loops, Eq(8) gives F.~|T—T,|, in agreement this regime, since they do not have time to adjust to changes
with the mean-field resuf6], F.~J\. Forc=3/2, F. hasa in the mechanical force. Alternatively, the distribution of
kink at T., while for c<3/2, F, approaches zero with a loop sizes could become important even for adiabatic pulling
continuous derivative. Thus the character of the mechanical the length of the stretched pafin), is less than the typical
desorption transition changes @t 3/2, in contrast with the size of loops,(k). For c<2, we expect the correlation
change in the thermal desorption transition, withas its  length, and hencgk), to diverge neall;, so that for fixed=
order parameter, at=2. Note that the low-temperature be- the loop size will eventually grow larger tham), with a
havior is unaffected by the exponent since loop entropy crossover atm)=~ (k).
plays no role in this regime. Thus for either a fast-acting external force, or Tosuffi-

Although the value ot affects the order of the thermal ciently close toT ., the pulling force interacts with the poly-
denaturation transitiof®], the mechanical desorption transi- mer locally, at the level of an individual loop, rather than
tion atF, is always first order in the case of a homopolymer.with the entire molecule. Nedr, most of the monomers are
For low pulling forcesF <F, there is a free-energy advan- unbound, and we can assume the last loop is attached to the
tage to keeping as many links as possible bound, while fopurface or the complementary strand with only one link. If
F>F, the molecule would like to unbind as many links asthe loop containk unbound links, its free energy per link is
possible. The unbound section of the chain is regarded, in theimply 7=[In w+SK)J/k. In this regime we can write a
grand canonical ensemble, as a separate system described"sgmimicroscopic” model for the free energy as a function
the partition functionVg(z*). Thus we recover the mean- of the number of pulled out monomefr3]
field results [2] (m)~|F—F/]"1, and {((Am)?)
~|F—F 2

Our phase diagram, Fig. 1, agrees qualitatively with re-
cent results for pulled polymers modeled as self-avoiding
walks on a hypercubic lattice i dimensiong10]. Equation  where (i) is the free energy per monomer of the loop
(8) suggests an empirical test for the exponerttased on a containing linki. The distribution of loop lengths is simply

N—m
F(m)=mg(F)+ ;1 i), 9)
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FIG. 2. F. is plotted nearT in the nonadiabatic regime. The
curves correspond to=1.25 (solid), c=3/2 (dashey, andc=2
(dot dashell Note that in the nonadiabatic regimé, vanishes
below T.. The form of these curves depends on the valua nf
which is here chosen arbitrarily.

P(k) e k= (s2)*/k°. Equation(9) resembles the Langevin
equation recently proposed as a model for the pulling transi
tion in a heteropolymer with sequence randomfggsbut in

this case the randomness has a non-Gaussian distribution

and thus cannot be analyzed in the simple framework o
Brownian motion.
Equation(9) suggests that the critical pulling force in the

nonadiabatic regimes ., is smaller than in the adiabatic re-
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able lengths. In particular,

V=(2dT/b?) (),

where the brackets indicate the averaging over the distribu-
tion of loop sizes{ 7)==y {[In o+ SK) VK (s2"/K]. Fig-

ure 2 shows the phase diagram in the nonadiabatic regime
nearT,, for three values of. In all three cases; ;. vanishes

at a temperature less thdp, in contrast with the adiabatic
case. This temperature is determined by the binding energy
Mo=—T In w of the single bond at the loop’s end. This pre-
diction of a variation of the critical force with pulling speed
gives an experimental method for assessing the degree to
which pulling experiments probe molecules in equilibrium,
rather than short subchains near the stretched end.

Note that, as the mean loop size divergesdetr2, the
timescale defining adiabatic pulling diverges. In this regime
even relatively slow variations in the pulling force could be
faster than the relaxation time of the loops. Simulations and
analytical calculations on the equivalent of E§) for het-
eropolymers have shown how the size of jumps and plateaux
in the force-extension curve vary Bsapproache§ . [2]. As
mentioned above, analysis of E@) is complicated by the

on-Gaussian distribution of the “noise” terny, , but simu-
ations could elucidate the analogy between the effects of
structural inhomogeneities in pulled homopolymers and se-
quence disorder in heteropolymer systems.

F.= (10)

gime. This is because the configurational entropy of a single The authors would like to thank D. Mukamel and D.

loop is smaller than that of an ensemble of loops with vari-

Lubensky for helpful comments on this work.
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